Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats

J Appl Physiol (1985). 2008 Sep;105(3):942-50. doi: 10.1152/japplphysiol.01274.2006. Epub 2008 Jun 26.

Abstract

N-methyl-d-aspartate (NMDA) receptor antagonism in the phrenic motonucleus area eliminates phrenic long-term facilitation (pLTF; a persistent augmentation of phrenic nerve activity after episodic hypoxia) in anesthetized rats. However, whether NMDA antagonism can eliminate ventilatory LTF (vLTF) in awake rats is unclear. The role of non-NMDA receptors in LTF is also unknown. Serotonin receptor antagonism before, but not after, episodic hypoxia eliminates pLTF, suggesting that serotonin receptors are required for induction, but not maintenance, of pLTF. However, because NMDA and non-NMDA ionotropic glutamate receptors are directly involved in mediating the inspiratory drive to phrenic, hypoglossal, and intercostal motoneurons, we hypothesized that these receptors are required for both formation and maintenance of vLTF. vLTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O(2)) with 5-min normoxia intervals, was measured with plethysmography in conscious adult male Sprague-Dawley rats. Either (+/-)-2-amino-5-phosphonovaleric acid (APV; NMDA antagonist, 1.5 mg/kg) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA antagonist, 10 mg/kg) was systemically (ip) injected approximately 30 min before hypoxia. APV was also injected immediately after or 20 min after episodic hypoxia in additional groups. As control, vehicle was similarly injected in each rat 1-2 days before. Regardless of being injected before or after episodic hypoxia, vehicle did not alter vLTF ( approximately 23%), whereas APV eliminated vLTF while having little effect on baseline ventilation or hypoxic ventilatory response. In contrast, CNQX enhanced vLTF ( approximately 34%) while decreasing baseline ventilation. Collectively, these results suggest that activation of NMDA but not non-NMDA receptors is necessary for formation and maintenance of vLTF in awake rats.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology
  • Animals
  • Disease Models, Animal
  • Excitatory Amino Acid Antagonists / pharmacology
  • Heart Rate
  • Hypoxia / metabolism
  • Hypoxia / physiopathology*
  • Long-Term Potentiation* / drug effects
  • Male
  • Motor Neurons / drug effects
  • Motor Neurons / metabolism*
  • Neural Pathways / metabolism
  • Neural Pathways / physiopathology
  • Pulmonary Ventilation* / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Respiratory Mechanics
  • Respiratory Muscles / innervation*
  • Tidal Volume
  • Time Factors
  • Valine / analogs & derivatives
  • Valine / pharmacology
  • Wakefulness

Substances

  • Excitatory Amino Acid Antagonists
  • Receptors, N-Methyl-D-Aspartate
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • 2-amino-5-phosphopentanoic acid
  • Valine