Gas-liquid dispersion with dual Rushton turbine impellers

Biotechnol Bioeng. 1989 Aug 20;34(5):617-28. doi: 10.1002/bit.260340506.

Abstract

Aerated and unaerated power consumption and flow patterns in a 0.56 m diameter agitated vessel containing water with dual Rushton turbines have been studied. Under unaerated conditions with a liquid height-to-diameter ratio of 2, an impeller spacing of 2 to 3 times the impeller is required for each to draw an amount of power equal to a single impeller. For aerated conditions, if a similar spacing is used, equations for the flooding-loading transition and for power consumption for a single Rushton impeller can be extended relatively easily to dual systems. All results for this spacing are explained by reference to bulk flow patterns and gassed-filled cavity structures and the proportion of sparged gas flowing through the upper impeller is also estimated. Such a spacing is generally recommended since it maximizes the power draw and hence the potential for oxygen mass transfer. Data are presented for other spacings but the results do not fit in easily with single agitator studies because strong impeller-impeller flow pattern interactions occur.