Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats

Transplant Proc. 2008 Jun;40(5):1700-5. doi: 10.1016/j.transproceed.2008.01.080.


Previous studies have demonstrated that bone marrow-derived mesenchymal stem cell (MSC) engraftment attenuated lung injury in a model induced by bleomycin in mice. However, the mechanisms are not completely understood. The primary objective of the present study was to determine whether MSC engraftment can also protect lungs against bleomycin-induced injury in rats and to observe any beneficial effects of cytokines. Twelve hours after bleomycin (5 mg/kg) or phosphate-buffered saline was perfused into the trachea, 5x10(6) DAPI-labeled MSCs or DMEM-F12 were injected into the tail vein of rats. Two weeks later, MSCs labeled with DAPI were detected by pan-cytokeratin staining. The level of laminin and hyaluronan in bronchoalveolar lavage fluid was measured by radioimmunoassay. Collagen content in lung tissue was calculated by the hydroxyproline assay. TGF-beta1, PDGF-A, B, and IGF-I were measured by real-time PCR. It was observed that some MSCs positive for pan-cytokeratin staining, an indicator of alveolar epithelial cells, were present in injured lung tissue. Bleomycin injection increased the content of hydroxyproline in lung tissue, as well as laminin and hyaluronan in bronchoalveolar lavage fluid, markers for lung injury and fibrosis. However, these effects were attenuated by MSC treatment. Furthermore, the increased mRNA levels of TGF-beta1, PDGF-A, PDGF-B, and IGF-I following bleomycin injection were also significantly decreased by MSC treatment. These observations provided evidence that MSCs are still present in the lung 2 weeks after the initial MSC treatment in rats, as well as documented the beneficial effects of MSC engraftment against bleomycin-induced lung injury associated with changes in TGF-beta1, PDGF-A, PDGF-B, and IGF-I. These results may provide an experimental base for clinical therapy of pulmonary fibrosis in the future.

MeSH terms

  • Animals
  • Bleomycin / toxicity*
  • Bone Marrow Cells / cytology
  • Femur
  • Lung / cytology
  • Lung / pathology
  • Male
  • Mesenchymal Stem Cell Transplantation / methods*
  • Rats
  • Rats, Sprague-Dawley
  • Respiratory Distress Syndrome / chemically induced*
  • Respiratory Distress Syndrome / surgery*
  • Tissue Engineering / methods


  • Bleomycin