Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei

J Proteomics. 2008 Jul 21;71(2):198-209. doi: 10.1016/j.jprot.2008.05.003. Epub 2008 Jun 3.

Abstract

Venoms from the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei were analyzed by RP-HPLC, N-terminal sequencing, MALDI-TOF mass fingerprinting and CID-MS/MS. The venom proteins of M.l. obtusa and V. raddei belong to 9 and 11 families, respectively. The two mountain viper venoms share bradykinin-potentiating/C-natriuretic peptides, and proteins from the dimeric distegrin, DC-fragment, CRISP, PLA(2), serine proteinase, C-type lectin-like, L-amino acid oxidase, and Zn(2+)-dependent metalloproteinase families, albeit each species exhibits distinct relative abundances. M.l. obtusa and V. raddei venoms contain unique components, e.g. the short disintegrin obtustatin in M.l. obtusa, and Kunitz-type serine proteinase inhibitor and VEGF-like molecules in V. raddei. The toxin formulation of M.l. obtusa and V. raddei venoms may be related to their adaptation to rocky mountain ecosystems. On the other hand, the possibility that the VEGF-like proteins from V. raddei underlie the reported potential therapeutic value of V. raddei venom for regenerating damaged peripheral nerves deserves further investigations. Using a similarity coefficient, we estimate that the similarity of venom proteins between M. l. obtusa and M. l. transmediterranea is less than 4%. Although this result would support the classification of M.l. obtusa and M.l. transmediterranea as different species, additional detailed genomic analyses are also required.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Proteome*
  • Proteomics
  • Sequence Analysis, Protein
  • Sequence Homology, Amino Acid
  • Species Specificity
  • Viper Venoms / chemistry*
  • Viper Venoms / metabolism
  • Viperidae / classification
  • Viperidae / metabolism*

Substances

  • Proteome
  • Viper Venoms