A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1
- PMID: 18596033
- PMCID: PMC2529125
- DOI: 10.1074/jbc.M804817200
A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that leads to loss of motor function and early death. About 5% of cases are inherited, with the majority of identified linkages in the gene encoding copper, zinc-superoxide dismutase (SOD1). Strong evidence indicates that the SOD1 mutations confer dominant toxicity on the protein. To provide new insight into mechanisms of ALS, we have generated and characterized a model for familial ALS in Drosophila with transgenic expression of human SOD1. Expression of wild type or disease-linked (A4V, G85R) mutants of human SOD1 selectively in motor neurons induced progressive climbing deficits. These effects were accompanied by defective neural circuit electrophysiology, focal accumulation of human SOD1 protein in motor neurons, and a stress response in surrounding glia. However, toxicity was not associated with oligomerization of SOD1 and did not lead to neuronal loss. These studies uncover cell-autonomous injury by SOD1 to motor neurons in vivo, as well as non-autonomous effects on glia, and provide the foundation for new insight into injury and protection of motor neurons in ALS.
Figures
Similar articles
-
Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease.J Neurosci. 2001 Dec 1;21(23):9246-54. doi: 10.1523/JNEUROSCI.21-23-09246.2001. J Neurosci. 2001. PMID: 11717358 Free PMC article.
-
Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex.J Biol Chem. 2007 Jun 1;282(22):16691-9. doi: 10.1074/jbc.M609743200. Epub 2007 Apr 2. J Biol Chem. 2007. PMID: 17403682
-
Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis.J Neurosci. 2005 Jan 5;25(1):108-17. doi: 10.1523/JNEUROSCI.4253-04.2005. J Neurosci. 2005. PMID: 15634772 Free PMC article.
-
Mitochondria in motor nerve terminals: function in health and in mutant superoxide dismutase 1 mouse models of familial ALS.J Bioenerg Biomembr. 2011 Dec;43(6):581-6. doi: 10.1007/s10863-011-9392-1. J Bioenerg Biomembr. 2011. PMID: 22089637 Free PMC article. Review.
-
Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation.Neuropathology. 2001 Mar;21(1):82-92. doi: 10.1046/j.1440-1789.2001.00361.x. Neuropathology. 2001. PMID: 11304046 Review.
Cited by
-
Drosophila melanogaster as a Tool for Amyotrophic Lateral Sclerosis Research.J Dev Biol. 2022 Aug 30;10(3):36. doi: 10.3390/jdb10030036. J Dev Biol. 2022. PMID: 36135369 Free PMC article. Review.
-
Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction.Neurobiol Aging. 2013 Oct;34(10):2322-30. doi: 10.1016/j.neurobiolaging.2013.03.024. Epub 2013 Apr 17. Neurobiol Aging. 2013. PMID: 23601674 Free PMC article.
-
TM2D genes regulate Notch signaling and neuronal function in Drosophila.PLoS Genet. 2021 Dec 14;17(12):e1009962. doi: 10.1371/journal.pgen.1009962. eCollection 2021 Dec. PLoS Genet. 2021. PMID: 34905536 Free PMC article.
-
Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing ALS-related degeneration.Hum Mol Genet. 2017 Nov 1;26(21):4153-4167. doi: 10.1093/hmg/ddx304. Hum Mol Genet. 2017. PMID: 28973139 Free PMC article.
-
Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction.Cell Mol Life Sci. 2021 Apr;78(7):3159-3179. doi: 10.1007/s00018-020-03732-3. Epub 2021 Jan 15. Cell Mol Life Sci. 2021. PMID: 33449150 Free PMC article. Review.
References
-
- Boillee, S., Vande Velde, C., and Cleveland, D. W. (2006) Neuron 52 39-59 - PubMed
-
- Valentine, J. S., Doucette, P. A., and Zittin Potter, S. (2005) Annu. Rev. Biochem. 74 563-593 - PubMed
-
- Bradley, W. G. (1987) Muscle Nerve 10 490-502 - PubMed
-
- Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J. P., Deng, H. X., Rahmani, S., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., Van Den Bergh, R., Hung, W.-Y., Deng, G., Mulder, D. W., Smyth, C., Laing, N. G., Soriano, E., Pericak-Vance, M. A., Haines, J., Rouleau, G. A., Gusella, J. S., Horvitz, H. R., and Brown, R. H., Jr. (1993) Nature 362 59-62 - PubMed
-
- Boillee, S., Yamanaka, K., Lobsiger, C. S., Copeland, N. G., Jenkins, N. A., Kassiotis, G., Kollias, G., and Cleveland, D. W. (2006) Science 312 1389-1392 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
