Communication between the synapse and the nucleus in neuronal development, plasticity, and disease
- PMID: 18616423
- PMCID: PMC2709812
- DOI: 10.1146/annurev.cellbio.24.110707.175235
Communication between the synapse and the nucleus in neuronal development, plasticity, and disease
Abstract
Sensory experience is critical for the proper development and plasticity of the brain throughout life. Successful adaptation to the environment is necessary for the survival of an organism, and this process requires the translation of specific sensory stimuli into changes in the structure and function of relevant neural circuits. Sensory-evoked activity drives synaptic input onto neurons within these behavioral circuits, initiating membrane depolarization and calcium influx into the cytoplasm. Calcium signaling triggers the molecular mechanisms underlying neuronal adaptation, including the activity-dependent transcriptional programs that drive the synthesis of the effector molecules required for long-term changes in neuronal function. Insight into the signaling pathways between the synapse and the nucleus that translate specific stimuli into altered patterns of connectivity within a circuit provides clues as to how activity-dependent programs of gene expression are coordinated and how disruptions in this process may contribute to disorders of cognitive function.
Conflict of interest statement
Figures
Similar articles
-
Weak synaptic activity induces ongoing signaling to the nucleus that is enhanced by BDNF and suppressed by low-levels of nicotine.Mol Cell Neurosci. 2004 May;26(1):50-62. doi: 10.1016/j.mcn.2003.12.016. Mol Cell Neurosci. 2004. PMID: 15121178
-
From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function.Neuron. 2008 Sep 25;59(6):846-60. doi: 10.1016/j.neuron.2008.09.002. Neuron. 2008. PMID: 18817726 Review.
-
Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways.Mol Cell Neurosci. 2002 Dec;21(4):616-25. doi: 10.1006/mcne.2002.1202. Mol Cell Neurosci. 2002. PMID: 12504594
-
Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD.Cell Rep. 2021 Jul 20;36(3):109398. doi: 10.1016/j.celrep.2021.109398. Cell Rep. 2021. PMID: 34289350
-
Nuclear calcium signaling.Adv Exp Med Biol. 2012;970:377-405. doi: 10.1007/978-3-7091-0932-8_17. Adv Exp Med Biol. 2012. PMID: 22351065 Review.
Cited by
-
Distinct activation properties of the nuclear factor of activated T-cells (NFAT) isoforms NFATc3 and NFATc4 in neurons.J Biol Chem. 2012 Nov 2;287(45):37594-609. doi: 10.1074/jbc.M112.365197. Epub 2012 Sep 12. J Biol Chem. 2012. PMID: 22977251 Free PMC article.
-
Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation.Neuron. 2012 Apr 12;74(1):122-35. doi: 10.1016/j.neuron.2012.02.021. Neuron. 2012. PMID: 22500635 Free PMC article.
-
Zinc induced structural changes in the intrinsically disordered BDNF Met prodomain confer synaptic elimination.Metallomics. 2020 Aug 19;12(8):1208-1219. doi: 10.1039/d0mt00108b. Metallomics. 2020. PMID: 32744273 Free PMC article.
-
Apurinic endonuclease-1 preserves neural genome integrity to maintain homeostasis and thermoregulation and prevent brain tumors.Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12285-E12294. doi: 10.1073/pnas.1809682115. Epub 2018 Dec 11. Proc Natl Acad Sci U S A. 2018. PMID: 30538199 Free PMC article.
-
Editorial: Bidirectional Communication Between Synapses and Nucleus in Brain Physiology and Disease.Front Mol Neurosci. 2022 May 6;15:909036. doi: 10.3389/fnmol.2022.909036. eCollection 2022. Front Mol Neurosci. 2022. PMID: 35600080 Free PMC article. No abstract available.
References
-
- Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science. 2004;303:197–202. - PubMed
-
- Alvarez VA, Sabatini BL. Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci. 2007;30:79–97. - PubMed
-
- Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006;441:595–600. - PubMed
-
- Bading H, Ginty DD, Greenberg ME. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993;260:181–86. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- P30 HD018655-26/HD/NICHD NIH HHS/United States
- R01 NS048276-01/NS/NINDS NIH HHS/United States
- P30 HD018655/HD/NICHD NIH HHS/United States
- HD18655/HD/NICHD NIH HHS/United States
- R01 NS048276-02/NS/NINDS NIH HHS/United States
- P30 HD018655-27/HD/NICHD NIH HHS/United States
- NS048276/NS/NINDS NIH HHS/United States
- R01 NS048276/NS/NINDS NIH HHS/United States
- R01 NS048276-05/NS/NINDS NIH HHS/United States
- R01 NS048276-04/NS/NINDS NIH HHS/United States
- P30 HD018655-25/HD/NICHD NIH HHS/United States
- T32 GM007753/GM/NIGMS NIH HHS/United States
- R01 NS048276-03/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
