Sustained primary culture of lobster (Panulirus argus) olfactory receptor neurons

Tissue Cell. 1991;23(5):719-31. doi: 10.1016/0040-8166(91)90025-o.

Abstract

Appropriate conditions were developed for primary sustained culture of olfactory neurons of the spiny lobster Panulirus argus. Neurons were cultured in a modified Liebowitz L15 media supplemented with Panulirus salts, basic minimal essential (BME) vitamins, L-glutamine, low dextrose, and either fetal calf serum (FCS) or lobster haemolymph. Neurite outgrowth and cell viability was strongly affected by choice of adherent substratum, presence of serum, and length of animal captivity. Neither nerve growth factor 7s (NGF-7s), HEPES, nor preconditioned media from the target organ, the olfactory lobe, had any gross effect on either longevity or neurite outgrowth. Five morphologically distinct neuronal cell types (8-16 mum soma diameter) could be defined based on their number and type of processes. All of these cells were electrically excitable (N = 50), and many (56%) produced either inward or outward currents in response to stimulation with single odors. The proportion of cells responding to odors increased (80%) when 10 cells were sequentially presented with a series of 3-5 odors. The finding that cultured cells maintain responsiveness to odors yet are morphologically more compact than their counterparts in situ, argues for the prospect of using these dissociated cultured olfactory receptor neurons to study signal transduction in olfaction.