Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics

Biotechnol Bioeng. 1995 Jun 20;46(6):545-52. doi: 10.1002/bit.260460607.

Abstract

An original reaction system (the phase separative reaction system) has been designed for derivatizing native lignins to highly phenolic, functional polymers. This system is composed of a phenol derivative and concentrated acid, which are not miscible at room temperature. The key point of the lignin functionalization process, including the phase separative system, is that lignin and carbohydrates, which are totally different in structures and reactivities, are modified individually in the different phases: lignin is present in the organic phase and carbohydrates in the aqueous phase. Through the process, lignin was modified selectively at Calpha-positions of side chains, the most reactive sites, to give highly phenolic, light-colored, diphenylmethane-type materials which still retained original interunit linkages formed by the dehydrogenative polymerization during the biosynthesis. The carbohydrates were swollen, followed by partial hydrolysis and dissolution in the acid solution, resulting in the perfect decomposition of interpenetrating polymer network structures in the cell wall. Therefore, the functionalization of lignin and the separation of resulting lignin from carbohydrates were quickly achieved at room temperature, independent of wood species. This process would be a powerful tool for estimating structures and reactivities of lignins as well as the functionalization of lignins, because of the selective structural modifications.