The S. Cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression
- PMID: 18629096
- PMCID: PMC2447382
- DOI: 10.1002/cfg.254
The S. Cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression
Abstract
We have compared Saccharomyces cerevisiae global gene expression in wild-type and mutants (Deltahap2 and Deltahap4) of the HAP transcriptional complex, which has been shown to be necessary for growth on respiratory substrates. Several hundred ORFs are under positive or negative control of this complex and we analyse here in detail the effect of HAP on mitochondria. We found that most of the genes upregulated in the wild-type strain were involved in organelle functions, but practically none of the downregulated ones. Nuclear genes encoding the different subunits of the respiratory chain complexes figure in the genes more expressed in the wild-type than in the mutants, as expected, but in this group we also found key components of the mitochondrial translation apparatus. This control of mitochondrial translation may be one of the means of coordinating mitochondrial and nuclear gene expression in elaborating the respiratory chain. In addition, HAP controls the nuclear genes involved in several other mitochondrial processes (import, mitochondrial division) that define the metabolic state of the cell, but not mitochondrial DNA replication and transcription. In most cases, a putative CCAAT-binding site is present upstream of the ORF, while in others no such sites are present, suggesting the control to be indirect. The large number of genes regulated by the HAP complex, as well as the fact that HAP also regulates some putative transcriptional activators of unknown function, place this complex at a hierarchically high position in the global transcriptional regulation of the cell.
Similar articles
-
"Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in Saccharomyces cerevisiae.J Biol Chem. 2020 Apr 10;295(15):5095-5109. doi: 10.1074/jbc.RA120.012739. Epub 2020 Feb 18. J Biol Chem. 2020. PMID: 32075909 Free PMC article.
-
RSC Chromatin-Remodeling Complex Is Important for Mitochondrial Function in Saccharomyces cerevisiae.PLoS One. 2015 Jun 18;10(6):e0130397. doi: 10.1371/journal.pone.0130397. eCollection 2015. PLoS One. 2015. PMID: 26086550 Free PMC article.
-
Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex.Prog Nucleic Acid Res Mol Biol. 1998;61:309-44. doi: 10.1016/s0079-6603(08)60830-2. Prog Nucleic Acid Res Mol Biol. 1998. PMID: 9752724 Review.
-
The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms.J Bacteriol. 1996 Apr;178(7):1842-9. doi: 10.1128/jb.178.7.1842-1849.1996. J Bacteriol. 1996. PMID: 8606156 Free PMC article.
-
HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology.Fungal Genet Biol. 1999 Jul-Aug;27(2-3):243-52. doi: 10.1006/fgbi.1999.1136. Fungal Genet Biol. 1999. PMID: 10441450 Review.
Cited by
-
Decoupling gene functions from knockout effects by evolutionary analyses.Natl Sci Rev. 2020 Jul;7(7):1169-1180. doi: 10.1093/nsr/nwaa079. Epub 2020 Apr 24. Natl Sci Rev. 2020. PMID: 34692141 Free PMC article.
-
Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.FEMS Yeast Res. 2011 Dec;11(8):603-20. doi: 10.1111/j.1567-1364.2011.00750.x. Epub 2011 Sep 26. FEMS Yeast Res. 2011. PMID: 22093745 Free PMC article.
-
How do yeast sense mitochondrial dysfunction?Microb Cell. 2016 Sep 22;3(11):532-539. doi: 10.15698/mic2016.11.537. Microb Cell. 2016. PMID: 28357322 Free PMC article. Review.
-
Regulation of Cat8 in energy metabolic balance and glucose tolerance in Saccharomyces cerevisiae.Appl Microbiol Biotechnol. 2023 Jul;107(14):4605-4619. doi: 10.1007/s00253-023-12593-2. Epub 2023 May 30. Appl Microbiol Biotechnol. 2023. PMID: 37249587
-
"Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in Saccharomyces cerevisiae.J Biol Chem. 2020 Apr 10;295(15):5095-5109. doi: 10.1074/jbc.RA120.012739. Epub 2020 Feb 18. J Biol Chem. 2020. PMID: 32075909 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
