Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni

Mol Microbiol. 2008 Sep;69(5):1091-103. doi: 10.1111/j.1365-2958.2008.06357.x. Epub 2008 Jul 10.


The energy taxis receptor Aer, in Escherichia coli, senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins Per, ARNT and Sim, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conserved domain (HCD) found in chemotaxis receptors. An apparent energy taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that have the domains of Aer divided between them. CetB has a PAS domain, while CetA has a predicted transmembrane region, HAMP domain and the HCD. In this study, we examined the expression of cetA and cetB and the biochemical properties of the proteins they encode. cetA and cetB are co-transcribed independently of the flagellar regulon. CetA has two transmembrane helices in a helical hairpin while CetB is a peripheral membrane protein tightly associated with the membrane. CetB levels are CetA dependent. Additionally, we demonstrated that both CetA and CetB participate in complexes, including a likely CetB dimer and a complex that may include both CetA and CetB. This study provides a foundation for further characterization of signal transduction mechanisms within CetA/CetB.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Campylobacter jejuni / chemistry*
  • Campylobacter jejuni / genetics
  • Campylobacter jejuni / physiology*
  • Chemotaxis
  • Flagella / chemistry
  • Flagella / genetics
  • Flagella / metabolism
  • Gene Expression
  • Membrane Proteins / chemistry
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Periplasmic Proteins / chemistry
  • Periplasmic Proteins / genetics
  • Periplasmic Proteins / metabolism
  • Protein Structure, Tertiary
  • Protein Transport
  • Regulon
  • Signal Transduction*
  • Transcription, Genetic


  • Bacterial Proteins
  • Membrane Proteins
  • Periplasmic Proteins