Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 68 (14), 6021-9

Myricetin Suppresses UVB-induced Skin Cancer by Targeting Fyn

Affiliations

Myricetin Suppresses UVB-induced Skin Cancer by Targeting Fyn

Sung Keun Jung et al. Cancer Res.

Abstract

Skin cancer is currently the most common type of human cancer in Americans. Myricetin, a naturally occurring phytochemical, has potent anticancer-promoting activity and contributes to the chemopreventive potential of several foods, including red wine. Here, we show that myricetin suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-kappaB induced by UVB was dose-dependently inhibited by myricetin treatment. Western blot and kinase assay data revealed that myricetin inhibited Fyn kinase activity and subsequently attenuated UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays revealed that myricetin competitively bound with ATP to suppress Fyn kinase activity. Importantly, myricetin exerted similar inhibitory effects compared with 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a well-known pharmacologic inhibitor of Fyn. In vivo mouse skin data also revealed that myricetin inhibited Fyn kinase activity directly and subsequently attenuated UVB-induced COX-2 expression. Mouse skin tumorigenesis data clearly showed that pretreatment with myricetin significantly suppressed UVB-induced skin tumor incidence in a dose-dependent manner. Docking data suggest that myricetin is easily docked to the ATP-binding site of Fyn, which is located between the N and C lobes of the kinase domain. Overall, these results indicated that myricetin exerts potent chemopreventive activity mainly by targeting Fyn in skin carcinogenesis.

Similar articles

See all similar articles

Cited by 42 PubMed Central articles

See all "Cited by" articles

Publication types

Feedback