Genetic and early environmental factors interact to influence ethanol's motivational effects. To explore these issues, a reciprocal cross-fostering paradigm was applied to Fischer and Lewis rats. The adult female offspring received vehicle or the kappa opioid antagonist nor-BNI (1 mg/kg) followed by assessments of conditioned taste aversion (CTA), blood alcohol concentrations (BACs) and hypothermia induced by 1.25 g/kg intraperitoneal ethanol. CTA acquisition in the in-fostered Fischer and Lewis animals did not differ; however, the Fischer maternal environment produced stronger acquisition in the cross-fostered Lewis rats versus their in-fostered counterparts. CTAs in the Fischer rats were not affected by cross-fostering. In extinction, the in-fostered Lewis animals displayed stronger aversions than the Fischer groups on two trials (of 12) whereas the cross-fostered Lewis differed from the Fischer groups on nine trials. Despite these CTA effects, Lewis rats exhibited higher BACs and stronger hypothermic responses than Fischer with no cross-fostering effects in either strain. No phenotypes were affected by nor-BNI. These data extend previous findings dissociating the aversive and peripheral physiological effects of ethanol in female Fischer and Lewis rats, and highlight the importance of genetic and early environmental factors in shaping subsequent responses to alcohol's motivational effects in adulthood.