Nanomagnetic actuation of receptor-mediated signal transduction

Nat Nanotechnol. 2008 Jan;3(1):36-40. doi: 10.1038/nnano.2007.418. Epub 2007 Dec 23.


Complex cell behaviours are triggered by chemical ligands that bind to membrane receptors and alter intracellular signal transduction. However, future biosensors, medical devices and other microtechnologies that incorporate living cells as system components will require actuation mechanisms that are much more rapid, robust, non-invasive and easily integrated with solid-state interfaces. Here we describe a magnetic nanotechnology that activates a biochemical signalling mechanism normally switched on by binding of multivalent chemical ligands. Superparamagnetic 30-nm beads, coated with monovalent ligands and bound to transmembrane receptors, magnetize when exposed to magnetic fields, and aggregate owing to bead-bead attraction in the plane of the membrane. Associated clustering of the bound receptors acts as a nanomagnetic cellular switch that directly transduces magnetic inputs into physiological cellular outputs, with rapid system responsiveness and non-invasive dynamic control. This technique may represent a new actuator mechanism for cell-based microtechnologies and man-machine interfaces.

Publication types

  • Letter
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Calcium / metabolism*
  • Cells, Cultured
  • Humans
  • Immunoglobulin E / metabolism*
  • Mast Cells / metabolism*
  • Mast Cells / radiation effects
  • Nanotechnology / methods*
  • Receptors, Cell Surface / metabolism*
  • Signal Transduction / physiology*
  • Signal Transduction / radiation effects


  • Receptors, Cell Surface
  • Immunoglobulin E
  • Calcium