Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 10 (30), 4449-55

Electrochemical Elucidation on the Mechanism of Uncoupling Caused by Hydrophobic Weak Acids

Affiliations

Electrochemical Elucidation on the Mechanism of Uncoupling Caused by Hydrophobic Weak Acids

Shunsuke Ozaki et al. Phys Chem Chem Phys.

Abstract

Uncoupler-mediated cation transport has been investigated by cyclic voltammetry for the ion transfer from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) in the presence of typical uncouplers, 3,5-di(tert-butyl)-4-hydroxybenzylidenemalononitril (SF6847) and 2,4-dinitrophenol (DNP). The voltammograms for the ion transfer were in a steady state and exhibited a rotated sigmoidal shape that was almost symmetrical about the origin (0 V, 0 A). The plot of the ion transfer current against pH was a bell-type curve centered on pH approximately = pK(a) + 1, K(a) being the dissociation constant of the uncouplers in the aqueous phase. Taking into account the ion transfer reactions at the W1|BLM and the BLM|W2 interfaces, these properties were well explained by our proposed model which considers that the ion transfer current is attributable to the facilitated transfers of H(+) and Na(+). The buffer action in the aqueous phase was found to play an important role in the facilitated H(+)-transfer across the BLM. The nature of the pH-dependence of the ion transfer current was reasonably explained from an electrochemical viewpoint based on the distribution coefficient of the anionic and neutral forms of SF6847, as estimated from its absorption spectra in liposomal membrane. The proposed model is also valuable for understanding the pH-dependence of uncoupling activity in mitochondria in the literature.

Similar articles

See all similar articles

Cited by 2 articles

LinkOut - more resources

Feedback