Materials Design Principles of Ancient Fish Armour

Nat Mater. 2008 Sep;7(9):748-56. doi: 10.1038/nmat2231. Epub 2008 Jul 27.

Abstract

Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the 'living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Compressive Strength
  • Computer Simulation
  • Defense Mechanisms
  • Elasticity
  • Fishes / physiology*
  • Hardness
  • Models, Biological*
  • Models, Chemical*
  • Skin / chemistry*
  • Skin Physiological Phenomena*
  • Stress, Mechanical