Extracting information from textual documents in the electronic health record: a review of recent research

Yearb Med Inform. 2008:128-44.


Objectives: We examine recent published research on the extraction of information from textual documents in the Electronic Health Record (EHR).

Methods: Literature review of the research published after 1995, based on PubMed, conference proceedings, and the ACM Digital Library, as well as on relevant publications referenced in papers already included.

Results: 174 publications were selected and are discussed in this review in terms of methods used, pre-processing of textual documents, contextual features detection and analysis, extraction of information in general, extraction of codes and of information for decision-support and enrichment of the EHR, information extraction for surveillance, research, automated terminology management, and data mining, and de-identification of clinical text.

Conclusions: Performance of information extraction systems with clinical text has improved since the last systematic review in 1995, but they are still rarely applied outside of the laboratory they have been developed in. Competitive challenges for information extraction from clinical text, along with the availability of annotated clinical text corpora, and further improvements in system performance are important factors to stimulate advances in this field and to increase the acceptance and usage of these systems in concrete clinical and biomedical research contexts.

Publication types

  • Review
  • Systematic Review

MeSH terms

  • Biomedical Research / methods
  • Humans
  • Information Storage and Retrieval / methods*
  • Medical Records Systems, Computerized*
  • Natural Language Processing*
  • Population Surveillance / methods
  • Vocabulary, Controlled