Do naturally occurring magnetic nanoparticles in the human body mediate increased risk of childhood leukaemia with EMF exposure?

Int J Radiat Biol. 2008 Jul;84(7):569-79. doi: 10.1080/09553000802195323.


Purpose: To develop the hypothesis that magnetic nanoparticles, found in many organisms and often involved in biological reactions to weak electromagnetic fields (EMF), mediate EMF-induced DNA damage which could result in increased risk of childhood leukaemia and other cancers.

Materials and methods: An analysis of current research into magnetic nanoparticles. Physics estimates and the development of the hypothesis that intracellular magnetic nanoparticles chronically change the free radical concentration and can mediate the enhanced rate of DNA damage in hematopoietic stem cells.

Results: The properties of magnetic nanoparticles are considered and the naturally occurring magnetic field generated by a magnetic nanoparticle within a cell is calculated to be in the range of about 1-200 millitesla, which exceeds the level of the natural geomagnetic field by orders of magnitude. Experiments are summarized on the biological effects of static magnetic field in this range. It is shown that magnetic nanoparticles can increase the rate of free radical formation by a few percent, in the course of an idealized radical-pair reaction in a cell. A mechanism is discussed that explains how weak alternating magnetic fields, of the order of 0.4 muT, could cause an increase in the rate of leukaemia via millitesla fields produced around superparamagnetic nanoparticles in hematopoietic stem cells.

Conclusions: The postulated presence of magnetic nanoparticles located in hematopoietic stem cells could constitute a cancer risk factor. Superparamagnetic nanoparticles can possibly mediate increased level of leukaemia caused by background exposure to low-frequency weak EMF.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • DNA Damage / physiology
  • DNA Damage / radiation effects*
  • Electromagnetic Fields / adverse effects*
  • Free Radicals / metabolism
  • Free Radicals / radiation effects
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / physiology
  • Hematopoietic Stem Cells / radiation effects*
  • Humans
  • Leukemia, Radiation-Induced*
  • Magnetics / adverse effects*
  • Nanoparticles / adverse effects*
  • Risk Factors
  • Time Factors
  • Whole-Body Irradiation*


  • Free Radicals