Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;4(6):1873-84.
doi: 10.1016/j.actbio.2008.06.020. Epub 2008 Jul 10.

Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration

Affiliations

Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration

Fan Wu et al. Acta Biomater. 2008 Nov.

Abstract

Calcium phosphate cement (CPC) has been successfully used in clinics as bone repair biomaterial for many years. However, poor mechanical properties and a low biodegradation rate limit any further applications. Magnesium phosphate cement (MPC) is characterized by fast setting, high initial strength and relatively rapid degradation in vivo. In this study, MPC was combined with CPC to develop novel calcium-magnesium phosphate cement (CMPC). The setting time, compressive strength, phase composition of hardened cement, degradation in vitro, cells responses in vitro by MG-63 cell culture and tissue responses in vivo by implantation of CMPC in bone defect of rabbits were investigated. The results show that CMPC has a shorter setting time and markedly better mechanical properties than either CPC or MPC. Moreover, CMPC showed significantly improved degradability compared to CPC in simulated body fluid. Cell culture results indicate that CMPC is biocompatible and could support cell attachment and proliferation. To investigate the in vivo biocompatibility and osteogenesis, the CMPC samples were implanted into bone defects in rabbits. Histological evaluation showed that the introduction of MPC into CPC enhanced the efficiency of new bone formation. CMPC also exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results obtained suggest that CMPC, having met the basic requirements of bone tissue engineering, might have a significant clinical advantage over CPC, and may have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources