Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 105 (30), 10308-13

Indo-European and Asian Origins for Chilean and Pacific Chickens Revealed by mtDNA


Indo-European and Asian Origins for Chilean and Pacific Chickens Revealed by mtDNA

Jaime Gongora et al. Proc Natl Acad Sci U S A.

Erratum in

  • Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14234


European chickens were introduced into the American continents by the Spanish after their arrival in the 15th century. However, there is ongoing debate as to the presence of pre-Columbian chickens among Amerindians in South America, particularly in relation to Chilean breeds such as the Araucana and Passion Fowl. To understand the origin of these populations, we have generated partial mitochondrial DNA control region sequences from 41 native Chilean specimens and compared them with a previously generated database of approximately 1,000 domestic chicken sequences from across the world as well as published Chilean and Polynesian ancient DNA sequences. The modern Chilean sequences cluster closely with haplotypes predominantly distributed among European, Indian subcontinental, and Southeast Asian chickens, consistent with a European genetic origin. A published, apparently pre-Columbian, Chilean specimen and six pre-European Polynesian specimens also cluster with the same European/Indian subcontinental/Southeast Asian sequences, providing no support for a Polynesian introduction of chickens to South America. In contrast, sequences from two archaeological sites on Easter Island group with an uncommon haplogroup from Indonesia, Japan, and the Philippines [corrected] and may represent a genetic signature of an early Polynesian dispersal. Modeling of the potential marine carbon contribution to the Chilean archaeological specimen casts further doubt on claims for pre-Columbian chickens, and definitive proof will require further analyses of ancient DNA sequences and radiocarbon and stable isotope data from archaeological excavations within both Chile and Polynesia.

Conflict of interest statement

The authors declare no conflict of interest.


Fig. 1.
Fig. 1.
MJNs showing the relationships and clustering the mtDNA CR (205 bp) from worldwide, Chilean Araucana, pre-Columbian, and ancient Pacific/Polynesian chickens. Haplotype numbers are shown next to nodes, the geographical locations of samples are given in color, and node size is proportional to the frequency of the corresponding haplotypes as shown in the circles with numbers on the left. Branch lengths are proportional to the number of mutations except for two: the branch leading from median vector (mv) 12 to haplotype 101 (17 mutations) and the branch leading from mv 3 to haplotypes 13 and 19 (one mutation), for visual clarity. A, B, C, and E correspond to the major haplogroups identified by Liu et al. (6). Most of the modern and ancient Chilean chickens analyzed in this study cluster with Indian subcontinental/European/Chinese chickens (nodes 5, 8, 9, 128, and 140), with the remainder clustering with nodes predominant in South and eastern Chinese/Japanese/Indonesian chickens (nodes 11, 17, and 141). The pre-Columbian Chilean sequence falls within haplotype 8, which is the single most common chicken haplotype found around the world. Six ancient Polynesian sequences (Tonga Mele Havea and Ha'ateiho, Samoa Fatuma Futi, Hawaii Kualoa, Niue Paluki, and one from Easter Island) also cluster within the same haplogroup. Five of the ancient chicken sequences from Easter Island cluster with haplotypes 145 and 148 (dashed circle within haplogroup C), which are part of an uncommon group comprising mostly Indonesian chickens. The Easter Island sequences may represent mtDNA signatures of early Polynesian chicken transport.

Comment in

Similar articles

See all similar articles

Cited by 27 PubMed Central articles

See all "Cited by" articles


Associated data