Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 11;27(40):5339-47.
doi: 10.1038/onc.2008.261. Epub 2008 Jul 28.

Interaction of folliculin (Birt-Hogg-Dubé gene product) with a novel Fnip1-like (FnipL/Fnip2) protein

Affiliations

Interaction of folliculin (Birt-Hogg-Dubé gene product) with a novel Fnip1-like (FnipL/Fnip2) protein

Y Takagi et al. Oncogene. .

Abstract

Birt-Hogg-Dubé (BHD) syndrome is characterized by the development of pneumothorax, hair folliculomas and renal tumors and the responsible BHD gene is thought to be a tumor suppressor. The function of folliculin (Flcn), encoded by BHD, is totally unknown, although its interaction with Fnip1 has been reported. In this study, we identified a novel protein binding to Flcn, which is highly homologous to Fnip1, and which we named FnipL (recently reported in an independent study as Fnip2). The interaction between FnipL/Fnip2 and Flcn may be mediated mainly by the C-terminal domains of each protein as is the case for the Flcn-Fnip1 interaction. FnipL/Fnip2 and Flcn were located together in the cytoplasm in a reticular pattern, although solely expressed Flcn was found mainly in the nucleus. Cytoplasmic retention of Flcn was canceled with C-terminal truncation of FnipL/Fnip2, suggesting that FnipL/Fnip2 regulates Flcn distribution through their complex formation. By the employment of siRNA, we observed a decrease in S6K1 phosphorylation in the BHD-suppressed cell. We also observed a decrease in S6K1 phosphorylation in FNIP1- and, to a lesser extent, in FNIPL/FNIP2-suppressed cells. These results suggest that Flcn-FnipL/Fnip2 and Flcn-Fnip1 complexes positively regulate S6K1 phosphorylation and that FnipL/Fnip2 provides an important clue to elucidating the function of Flcn and the pathogenesis of BHD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms