Optical mapping discerns genome wide DNA methylation profiles

BMC Mol Biol. 2008 Jul 30:9:68. doi: 10.1186/1471-2199-9-68.

Abstract

Background: Methylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard, a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification.

Results: A single molecule approach is presented for the discernment of methylation profiles, based on optical mapping. We report results from a series of pilot studies demonstrating the capabilities of optical mapping as a platform for methylation profiling of whole genomes. Optical mapping was used to discern the methylation profile from both an engineered and wild type Escherichia coli. Furthermore, the methylation status of selected loci within the genome of human embryonic stem cells was profiled using optical mapping.

Conclusion: The optical mapping platform effectively detects DNA methylation patterns. Due to single molecule detection, optical mapping offers significant advantages over other technologies. This advantage stems from obviation of DNA modification steps, such as bisulfite treatment, and the ability of the platform to assay repeat dense regions within mammalian genomes inaccessible to techniques using array-hybridization technologies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • CpG Islands
  • DNA Methylation*
  • Embryonic Stem Cells
  • Epigenesis, Genetic*
  • Escherichia coli / genetics
  • Fluorescent Dyes
  • Fluorometry
  • Gene Expression Profiling
  • Genomics / methods*
  • Humans
  • Restriction Mapping

Substances

  • Fluorescent Dyes