3-Hydroxypropionaldehyde (3-HPA), an intermediary compound of glycerol metabolism in bacteria, serves as a precursor to 3-Hydroxypropionic acid (3-HP), a commercially valuable platform chemical. To achieve the effective conversion of 3-HPA to 3-HP, an aldH gene encoding an aldehyde dehydrogenase in Escherichia coli K-12 (AldH) was cloned, expressed, and characterized for its properties. The recombinant AldH exhibited broad substrate specificity for various aliphatic and aromatic aldehydes. AldH preferred NAD+ over NADP+ as a cofactor for the oxidation of most aliphatic aldehydes tested. Among the aldehydes used, the specific activity was highest (38.1 U mg(-1) protein) for 3-HPA at pH 8.0 and 37 degrees C. The catalytic efficiency (kcat) and the specificity constant (kcat/Km) for 3-HPA in the presence of NAD+ were 28.5 s(-1) and 58.6x10(3) M(-1) s(-1), respectively. The AldH activity was enhanced in the presence of disulfide reductants such as dithiothreitol (DTT) or 2-mercaptoethanol, while several metal ions, particularly Hg2+, Ag+, Cu2+, and Zn2+, inhibited AldH activity. This study illustrates that AldH is a potentially useful enzyme in converting 3-HPA to 3-HP.