Retarded differentiation of Leydig cells and increased apoptosis of germ cells in the initial round of spermatogenesis of rats with lethal dwarf and epilepsy (lde/lde) phenotypes

J Androl. 2008 Nov-Dec;29(6):669-78. doi: 10.2164/jandrol.108.005066. Epub 2008 Jul 31.

Abstract

The lde/lde rats show a severe dwarf phenotype with early postnatal lethality and a high incidence of epileptic seizure. Seizures are first detected in this model between 16 and 63 days of age, and mostly begin as wild running and progress to generalized tonic-clonic convulsions. Because our histological examination detected many extracellular vacuoles in the hippocampus and amygdaloid bodies of these animals at 28 days of age, these pathological alterations may be related to the epileptogenesis in lde/lde rats. In addition to these defects, male lde/lde rats have apparently smaller testes with reduced number of germ cells and poorly matured adult-type Leydig cells in comparison with wild-type controls. In the present study, we performed anatomical, histological, and endocrinologic examinations to characterize the testicular phenotype of lde/lde rats at 21, 28, 35, and 56 days of age. Male lde/lde rats showed severely retarded growth of the testes and accessory sex organs. Their seminiferous tubules were significantly smaller and contained markedly fewer germ cells at all time points examined as compared with controls. Significantly fewer Sertoli cells at 21 and 28 days of age, markedly decreased spermatocyte number at 28 days of age, and delayed appearance of spermatids at 56 days of age were observed in the testes of lde/lde rats. More TUNEL (T&T-mediated duTP-biotin nick-end labeling)-positive cells were detected in lde/lde seminiferous tubules, and the largest number of apoptotic cells was recorded at 28 days of age. The increases in 3beta-hydroxysteroid dehydrogenase-positive adult-type Leydig cells and 11beta-hydroxysteroid dehydrogenase-positive mature adult-type Leydig cells were also severely retarded in the testes of lde/lde rats. Consistent with these defects, significantly lower plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone concentrations were detected in lde/lde males at 28 days of age, and weak immunostaining for FSH and smaller cytoplasm of LH-positive cells were detected in the anterior pituitary lobes of lde/lde males. Despite a normal level of plasma LH after 35 days of age, a significantly lower level of plasma testosterone was detected at 56 days of age. These results indicate that the normal lde allele is related to prepubertal elevations of gonadotropins and normal development of adult-type Leydig cells. Because lde/lde rats experience epileptic seizures during the period when the hypothalamus-pituitary-testicular axis is established, lde/lde rats would be useful as a model for reproductive disorder with pediatric epilepsy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology*
  • Cell Differentiation
  • Dwarfism / genetics
  • Epilepsy / congenital
  • Follicle Stimulating Hormone / blood
  • Hippocampus / pathology
  • Immunohistochemistry
  • In Situ Nick-End Labeling
  • Leydig Cells / pathology*
  • Luteinizing Hormone / blood
  • Male
  • Phenotype
  • Rats
  • Rats, Mutant Strains
  • Spermatogenesis / physiology*
  • Spermatozoa / pathology*
  • Testis / growth & development
  • Testis / pathology*
  • Testosterone / blood

Substances

  • Testosterone
  • Luteinizing Hormone
  • Follicle Stimulating Hormone