Comparison of two-dimensional fractionation techniques for shotgun proteomics

Anal Chem. 2008 Sep 1;80(17):6715-23. doi: 10.1021/ac8007994. Epub 2008 Aug 5.


Two-dimensional (2D) fractionation is a commonly used tool to increase dynamic range and proteome coverage for bottom-up, shotgun proteomics. However, there are few reports comparing the relative separation efficiencies of 2D methodologies using low-microgram sample quantities. In order to systematically evaluate 2D separation techniques, we fractionated microgram quantities of E. coli protein extract by seven different methods. The first dimension of separation was performed with either reversed-phase high-pressure liquid chromatography (RP-HPLC), gel electrophoresis (SDS-PAGE), or strong cation exchange (SCX-HPLC). The second dimension consisted of a standard reversed-phase capillary HPLC coupled to an electrospray ionization quadrupole time-of-flight mass spectrometer for tandem mass spectrometric analysis. The overall performance and relative fractionation efficiencies of each technique were assessed by comparing the total number of proteins identified by each method. The protein-level RP-HPLC and the high-pH RP-HPLC peptide-level separations performed the best, identifying 281 and 266 proteins, respectively. The online pH variance SCX and the SDS-PAGE returned modest performances with 178 and 139 proteins identified, respectively. The offline SCX had the worst performance with 81 proteins identified. We also examined various chromatographic factors that contribute to separation efficiency, including resolving power, orthogonality, and sample loss.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Extracts / chemistry
  • Chemical Fractionation / methods*
  • Chromatography, Ion Exchange
  • Electrophoresis, Polyacrylamide Gel
  • Escherichia coli Proteins / isolation & purification*
  • Hydrogen-Ion Concentration
  • Proteomics / methods*


  • Cell Extracts
  • Escherichia coli Proteins