Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species

Biochemistry. 2008 Sep 9;47(36):9678-87. doi: 10.1021/bi800699v. Epub 2008 Aug 15.

Abstract

Alpha-synuclein is likely to play a key role in the development of Parkinson's disease as well as other synucleinopathies. In animal models, overexpression of full-length or carboxy-terminally truncated alpha-synuclein has been shown to produce pathology. Although the proteosome and lysosome have been proposed to play a role in the degradation of alpha-synuclein, the enzyme(s) involved in alpha-synuclein clearance and generation of its carboxy-terminally truncated species have not been identified. In this study, the role of cathepsin D and calpain I in these processes was analyzed. In vitro experiments, using either recombinant or endogenous alpha-synuclein as substrates and purified cathepsin D or lysosomes, demonstrated that cathepsin D degraded alpha-synuclein very efficiently, and that limited proteolysis resulted in the generation of carboxy-terminally truncated species. Purified calpain I also cleaved alpha-synuclein, but carboxy-terminally truncated species were not the main cleavage products, and calpain I activity present in cellular lysates was not able to degrade the protein. Knockdown of cathepsin D in cells overexpressing wild-type alpha-synuclein increased total alpha-synuclein levels by 28% and lysosomal alpha-synuclein by 2-fold. In in vitro experiments, pepstatin A completely blocked the degradation of alpha-synuclein in purified lysosomes. Furthermore, lysosomes isolated from cathepsin D knockdown cells showed a marked reduction in alpha-synuclein degrading activity, indicating that cathepsin D is the main lysosomal enzyme involved in alpha-synuclein degradation. Our findings suggest that upregulation of cathepsin D could be an additional therapeutic strategy to lessen alpha-synuclein burden in synucleinopathies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Calpain / genetics
  • Calpain / metabolism
  • Cathepsin D / genetics
  • Cathepsin D / metabolism*
  • Cell Line, Tumor
  • Disease Models, Animal
  • Gene Deletion
  • Humans
  • Lysosomes / enzymology*
  • Mice
  • Parkinson Disease / enzymology*
  • Parkinson Disease / genetics
  • alpha-Synuclein / genetics
  • alpha-Synuclein / metabolism*

Substances

  • alpha-Synuclein
  • Calpain
  • Cathepsin D