Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens

Br Poult Sci. 2008 Jul;49(4):487-95. doi: 10.1080/00071660802251731.


1. Two experiments were conducted to investigate the effects of exogenous corticosterone administration (30 mg/kg diet) and dietary energy level on feed or energy intake and fat deposition in broiler chickens of 1 and 4 weeks of age. 2. Corticosterone treatment significantly suppressed body weight (BW) gain and reduced feed and caloric efficiencies. The retarded growth may conceal the stimulatory effect of corticosterone on feed consumption or metabolisable energy (ME) intake. A high-energy diet may increase energy intake and partially alleviate the suppressing effect of corticosterone on growth of broilers. 3. Corticosterone administration promoted the conservation of energy stores as fat at both abdominal and subcutaneous sites and this process occurred regardless of dietary energy level in ad libitum feeding status. A high-energy diet increased fat accumulation and showed no significant interaction with corticosterone treatment. 4. The suppressed development of breast and thigh muscles by corticosterone treatment was observed only in 1-week-old chickens fed on the low-energy diet. In contrast, the yield of breast muscle but not thigh muscle was significantly decreased by corticosterone in 4-week-old chickens, suggesting that the tissue specificity to corticosterone challenge is age dependent. 5. Plasma concentrations of glucose, insulin, triglyceride, non-esterified fatty acids (NEFA) and very low density lipoprotein were increased by corticosterone treatment regardless of diet treatment. A high-energy diet increased plasma levels of NEFA and resulted in hyperinsulinism in 4-week-old chickens but not in 1-week-old chickens. 6. Lipoprotein lipase (LPL) activities in adipose tissues may have been up-regulated by corticosterone treatment and showed tissue specificity. The increased LPL activities at ad libitum feeding status were not necessarily linked with the increased fat accumulation in corticosterone challenged chickens. 7. Corticosterone resulted in augmented energy consumption and altered energy redistribution toward lipid deposition. The induced insulin resistance and enhanced hepatic de novo lipogenesis by corticosterone are likely to be responsible for the increased fat deposition.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / drug effects
  • Adipose Tissue / metabolism*
  • Animal Feed / analysis*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Blood Glucose
  • Body Composition / drug effects
  • Chickens / physiology*
  • Corticosterone / administration & dosage*
  • Corticosterone / pharmacology*
  • Diet / veterinary
  • Insulin Resistance*
  • Male
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / growth & development


  • Blood Glucose
  • Corticosterone