Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations

J Insect Physiol. 2008 Sep;54(9):1371-6. doi: 10.1016/j.jinsphys.2008.07.009. Epub 2008 Jul 26.


Stress resistance traits in Drosophila often show clinal variation, suggesting that selection affects resistance traits either directly or indirectly. One of the most common causes of stress for animals is the shortage or suboptimal quality of food, and individuals within many species must survive periods of starvation or exposure to nutritionally imbalanced diets. This study determines the relationship between starvation resistance, body lipid content, and lifespan in five recently collected Drosophila simulans populations from four distinct geographic localities. Despite rearing under standard nutritional conditions, we observed significant differences in starvation resistance between sexes and between localities. If body lipid proportion is included as a covariate in statistical analysis the difference between the sexes remains (slopes are parallel, with males more susceptible than females to starvation across all lipid proportions) but the effect of locality disappears. This result suggests that flies from different localities differ in their susceptibility to starvation because of differences in their propensity to store body lipid. We observed a negative relationship between lifespan and starvation resistance in both males and females, suggesting a fitness cost to increasing lipid reserves. These data raise issues about the role of diet in maintaining life history trait variation within and among populations. In conclusion, we show many similarities and surprising differences in life history traits between D. simulans and Drosophila melanogaster.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Drosophila / metabolism*
  • Female
  • Geography
  • Lipid Metabolism*
  • Longevity*
  • Male
  • Starvation