Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat

Theor Appl Genet. 2008 Nov;117(7):1155-66. doi: 10.1007/s00122-008-0853-9. Epub 2008 Aug 20.

Abstract

Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL.7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS.4BL-7Lr#1S + T4BL-7Lr#1S.5Lr#1S. T14 had T6BS.6BL-7Lr#1S + T6BL.5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S.7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosome Banding
  • Chromosomes, Plant
  • Crosses, Genetic
  • Fusarium*
  • Genes, Plant*
  • Genetic Markers
  • Immunity, Innate / genetics
  • In Situ Hybridization
  • Inbreeding
  • Plant Diseases / genetics*
  • Plant Diseases / microbiology
  • Poaceae / genetics*
  • Polymorphism, Restriction Fragment Length
  • Translocation, Genetic
  • Triticum / genetics*
  • Triticum / microbiology

Substances

  • Genetic Markers