Purpose: Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression.
Methods: To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human Fc gamma RIIb receptor. The NA3-Fc gamma RIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging.
Results: Flow cytometry identified Jurkat clones stably expressing NA3-Fc gamma RIIb at low, medium, and high levels. High and medium NA3-Fc gamma RIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA (124)I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 +/- 0.2, 15.2 +/- 1.3, and 4.6 +/- 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 +/- 0.8%ID/g.
Conclusion: The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo.