Expanding role of cyclin dependent kinases in cytokine inducible gene expression

Cell Cycle. 2008 Sep 1;7(17):2661-6. doi: 10.4161/cc.7.17.6594. Epub 2008 Sep 12.

Abstract

The Positive Transcriptional Elongation Factor b (P-TEFb), a heterodimer of CDK9 and Cyclin T1, is widely implicated in control of basal gene expression. Here, P-TEFb is involved in transitioning paused RNA polymerase II to enter productive transcriptional elongation mode by phosphorylating negative elongation factors and Ser(2) of the heptad repeat in the RNA Pol II COOH terminal domain (CTD). This perspective will examine recent work in two unrelated inducible signaling pathways that illustrate the central role of P-TEFb in mediating cytokine inducible transcription networks. Specifically, P-TEFb has been recently discovered to play a key role in TNF-inducible NFkappaB activation and IL-6-inducible STAT3 signaling. In these signaling cascades, P-TEFb forms protein complexes with the activated nuclear RelA and STAT3 transcription factor in the cellular nucleoplasm, an association important for P-TEFb's promoter targeting. Studies using siRNA-mediated knockdown and/or selective CDK inhibitors show that P-TEFb plays a functional role in activation of a subset of NFkappaB-dependent targets and all STAT3-dependent genes studied to date. Interestingly, cytokine inducible genes that are sensitive to P-TEFb inhibition share an induction mechanism requiring inducible RNA Pol II recruitment. Chromatin immunoprecipitation studies have preliminarily indicated that this recruitment is dependent on CDK enzymatic activity. The potential of inhibiting P-TEFb as an anti-inflammatory therapy in innate immunity and systemic inflammation will be discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cyclin-Dependent Kinases / metabolism*
  • Cytokines / pharmacology*
  • Gene Expression Regulation / drug effects*
  • Humans
  • NF-kappa B / metabolism
  • Positive Transcriptional Elongation Factor B / genetics
  • Transcription, Genetic / drug effects

Substances

  • Cytokines
  • NF-kappa B
  • Positive Transcriptional Elongation Factor B
  • Cyclin-Dependent Kinases