Prospective type 1 and type 2 disulfides of Keap1 protein

Chem Res Toxicol. 2008 Oct;21(10):2051-60. doi: 10.1021/tx800226m. Epub 2008 Aug 26.


Experiments were carried out to detect cysteine residues on human Keap1 protein that may be sensors of oxidative stress that gives rise to changes in the GSH/GSSG redox couple. Human Keap1 protein, at a final concentration of 6 microM, was incubated for two hours in aqueous buffer containing 0.010 M GSH, pH 8, in an argon atmosphere. Subsequently, excess iodoacetamide and trypsin were added to generate a peptide map effected by LCMS analysis. Peptides containing all 27 carboxamidomethylated cysteines were identified. Replacement of GSH by 0.010 M GSSG yielded a map in which 13 of the original carboxamidomethylated peptides were unperturbed, while other caboxamidomethylated cysteine-containing peptides were undetected, and a number of new cysteine-containing peptide peaks were observed. By mass analysis, and in some cases, by isolation, reduction, carboxamidomethylation, and reanalysis, these were identified as S-glutathionylated (Type 1) or Cys-Cys (Type 2) disulfides. Such peptides derived from the N-terminal, dimerization, central linker, Kelch repeat and C-terminal domains of Keap1. Experiments were carried out in which Keap1 was incubated similarly but in the presence of various GSH/GSSG ratios between 100 and 1 ([GSH + GSSG] = 0.010 M), with subsequent caraboxamidomethylation and trypsinolysis to determine differences in sensitivities of the different cysteines to the type 1 and type 2 modifications. Cysteines most sensitive to S-glutathionylation include Cys77, Cys297, Cys319, Cys368, and Cys434, while cysteine disulfides most readily formed are Cys23-Cys38 and Cys257-Cys297. The most reducing conditions at which these modifications are at GSH/GSSG = 10, which computes to an oxidation potential of E h = -268.5 mV, a physiologically relevant value. Under somewhat more oxidizing, but still physiologically relevant, conditions, GSH/GSSG = 1 ( E h = -231.1 mV), a Cys319-Cys319 disulfide is detected far from the dimerization domain of the Keap1 homodimer. The potential impact on protein structure of the glutathionylation of Cys434 and Cys368, the two modified residues in the Kelch repeat domain, was analyzed by docking and energy minimizations of glutathione residues attached to the Kelch repeat domain, whose coordinates are known. The energy minimizations indicated marked alterations in structure with a substantial constriction of Neh2 binding domain of the Keap1 Kelch repeat domain. This alteration appears to be enforced by an extended hydrogen-bonding network between residues on the glutathione moiety attached to Cys434 and amino acid side chains that have been shown to be essential for repression of Nrf2 by Keap1. The modifications of Keap1 detected in the present study are discussed in the context of previous work of others who have examined the sensitivity of cysteines on Keap1 to electrophile assault.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Disulfides / chemistry*
  • Disulfides / classification
  • Disulfides / metabolism*
  • Glutathione / chemistry
  • Glutathione / metabolism
  • Humans
  • Intracellular Signaling Peptides and Proteins / chemistry*
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Kelch-Like ECH-Associated Protein 1
  • Models, Molecular
  • Oxidation-Reduction
  • Tandem Mass Spectrometry
  • Titrimetry


  • Disulfides
  • Intracellular Signaling Peptides and Proteins
  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • Glutathione