Multiple bacterial symbionts in two species of co-occurring gutless oligochaete worms from Mediterranean sea grass sediments

Environ Microbiol. 2008 Dec;10(12):3404-16. doi: 10.1111/j.1462-2920.2008.01728.x. Epub 2008 Sep 1.


Gutless oligochaete worms are found worldwide in the pore waters of marine sediments and live in symbiosis with chemoautotrophic sulfur-oxidizing bacteria. In the Mediterranean, two species of gutless oligochaete worms, Olavius algarvensis and O. ilvae, co-occur in sediments around sea grass beds. These sediments have extremely low sulfide concentrations (< 1 microM), raising the question if O. ilvae, as shown previously for O. algarvensis, also harbours sulfate-reducing symbionts that provide its sulfur-oxidizing symbionts with reduced sulfur compounds. In this study, we used fluorescence in situ hybridization (FISH) and comparative sequence analysis of genes for 16S rRNA, sulfur metabolism (aprA and dsrAB), and autotrophic carbon fixation (cbbL) to examine the microbial community of O. ilvae and re-examine the O. algarvensis symbiosis. In addition to the four previously described symbionts of O. algarvensis, in this study a fifth symbiont belonging to the Spirochaetes was found in these hosts. The symbiotic community of O. ilvae was similar to that of O. algarvensis and also included two gammaproteobacterial sulfur oxidizers and two deltaproteobacterial sulfate reducers, but not a spirochete. The phylogenetic and metabolic similarity of the symbiotic communities in these two co-occurring host species that are not closely related to each other indicates that syntrophic sulfur cycling provides a strong selective advantage to these worms in their sulfide-poor environment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / classification*
  • Bacteria / isolation & purification*
  • Bacterial Physiological Phenomena
  • Bacterial Proteins / genetics
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / chemistry
  • DNA, Ribosomal / genetics
  • Genes, rRNA
  • Geologic Sediments
  • In Situ Hybridization, Fluorescence
  • Mediterranean Sea
  • Molecular Sequence Data
  • Oligochaeta / microbiology*
  • Oligochaeta / physiology
  • Phylogeny
  • Poaceae
  • RNA, Bacterial / genetics
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Sequence Homology, Nucleic Acid
  • Sulfur / metabolism
  • Symbiosis*


  • Bacterial Proteins
  • DNA, Bacterial
  • DNA, Ribosomal
  • RNA, Bacterial
  • RNA, Ribosomal, 16S
  • Sulfur