Hand interactions in rapid grip force adjustments are independent of object dynamics

J Neurophysiol. 2008 Nov;100(5):2738-45. doi: 10.1152/jn.90593.2008. Epub 2008 Sep 3.


Object manipulation requires rapid increase in grip force to prevent slippage when the load force of the object suddenly increases. Previous experiments have shown that grip force reactions interact between the hands when holding a single object. Here we test whether this interaction is modulated by the object dynamics experienced before the perturbation of the load force. We hypothesized that coupling of grip forces should be stronger when holding a single object than when holding separate objects. We measured the grip force reactions elicited by unpredictable load perturbations when participants were instructed to hold one single or two separate objects. We simulated these objects both visually and dynamically using a virtual environment consisting of two robotic devices and a calibrated stereo display. In contrast to previous studies, the load forces arising from a single object could be uncoupled at the moment of perturbation, allowing for a pure measurement of grip force coupling. Participants increased grip forces rapidly (onset approximately 70 ms) in response to perturbations. Grip force increases were stronger when the load force on the other hand also increased. No such coupling was present in the reaction of the arms to the load force increase. Surprisingly, however, the grip force interaction did not depend on the nature of the manipulated object. These results show fast obligatory coupling of bimanual grip force responses. Although this coupling may play a functional role for providing stability in bimanual object manipulation, it seems to constitute a relatively hard-wired modulation of a reflex.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Adult
  • Biomechanical Phenomena
  • Female
  • Functional Laterality
  • Hand Strength / physiology*
  • Humans
  • Male
  • Nonlinear Dynamics*
  • Proprioception
  • Psychomotor Performance / physiology*
  • Psychophysics
  • Touch / physiology
  • Weight-Bearing / physiology
  • Young Adult