Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data

Nat Protoc. 2008;3(9):1444-51. doi: 10.1038/nport.2008.132.

Abstract

Mass spectrometry (MS)-based shotgun proteomics allows protein identifications even in complex biological samples. Protein abundances can then be estimated from the counts of tandem MS (MS/MS) spectra attributable to each protein, provided one accounts for differential MS detectability of contributing peptides. We developed a method, APEX, which calculates Absolute Protein EXpression levels based upon learned correction factors, MS/MS spectral counts and each protein's probability of correct identification. This protocol describes APEX-based calculations in three parts. (i) Using training data, peptide sequences and their sequence properties, a model is built to estimate MS detectability (O(i)) for any given protein. (ii) Absolute protein abundances are calculated from spectral counts, identification probabilities and the learned O(i)-values. (iii) Simple statistics allow calculation of differential expression in two distinct biological samples, i.e., measuring relative protein abundances. APEX-based protein abundances span 3-4 orders of magnitude and are applicable to mixtures of 100s to 1,000s of proteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Models, Genetic*
  • Proteins / analysis*
  • Proteins / metabolism*
  • Proteomics / methods*
  • Software*
  • Tandem Mass Spectrometry / methods*

Substances

  • Proteins