Effect of drinking pattern on plasma lipoproteins and body weight

Atherosclerosis. 1991 May;88(1):49-59. doi: 10.1016/0021-9150(91)90256-3.

Abstract

The effect of drinking pattern on plasma lipoproteins and body weight was examined in three groups of squirrel monkeys: (1) controls fed isocaloric liquid diet; (2) regular drinkers given liquid diet containing ethanol (EtOH) substituted isocalorically for carbohydrate at 12% of calories daily; and (3) binge drinkers fed 6% EtOH calories daily for a four-day period followed by three days of 20% EtOH to mimic a weekend bout drinking cycle. The number of calories offered per day was the same for all groups, and the average weekly EtOH consumption (12% calories) was identical for the two alcohol treatments. The entire study lasted six months. There were no significant differences in plasma cholesterol, triglyceride or liver function tests. Regular drinkers had the highest high density lipoprotein2/high density lipoprotein3 (HDL2/HDL3) protein and apolipoprotein A-I/B ratios of any group and exhibited a significant elevation in the molar plasma lecithin:cholesterol acyltransferase (LCAT) rate (nmol/min/ml). Binge drinking produced a selective increase in low density lipoprotein (LDL) cholesterol and apolipoprotein B, and a depression in the fractional LCAT rate (% esterified/min). During the course of the study, controls ate 92% of their diet while the alcohol groups each consumed 95% of the liquid diet. Despite this difference, body weight and Quetelet index (weight/height2) decreased progressively in the order controls greater than regular drinkers greater than binge drinkers. Results from our study indicate that moderate, regular daily consumption of EtOH at 12% of calories causes a modest reduction in body weight and produces a coronary protective lipoprotein profile (increases HDL2/HDL3, increases apolipoprotein A-I/B, low LDL cholesterol). By contrast, when this same average weekly dose is concentrated in a binge cycle, unfavorable alterations in lipoprotein composition (increases LDL cholesterol, increases apolipoprotein B) and metabolism (decreases LCAT activity) occur along with weight loss and depletion of body fat. These studies point to the value of the squirrel monkey model in evaluating both favorable and pathophysiological effects of chronic EtOH intake.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alcohol Drinking*
  • Animals
  • Apolipoproteins / blood
  • Body Constitution
  • Body Weight / drug effects*
  • Energy Intake
  • Ethanol / blood
  • Ethanol / pharmacology
  • Lipoproteins / blood*
  • Lipoproteins, HDL / blood
  • Male
  • Phosphatidylcholine-Sterol O-Acyltransferase / blood
  • Saimiri

Substances

  • Apolipoproteins
  • Lipoproteins
  • Lipoproteins, HDL
  • Ethanol
  • Phosphatidylcholine-Sterol O-Acyltransferase