Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference
- PMID: 18800378
- DOI: 10.1002/bies.20803
Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference
Abstract
The Drosophila Bolwig organs are small photoreceptor bundles that facilitate the phototactic behavior of the larva. Comparative literature suggests that these highly reduced visual organs share evolutionary ancestry with the adult compound eye. A recent molecular genetic study produced the first detailed account of the mechanisms controlling differential opsin expression and photoreceptor subtype determination in these enigmatic eyes of the Drosophila larva. Here, the evolutionary implications are examined, taking into account the dynamic diversification of opsin genes and the spatial regulation of opsin homolog expression in other insects. It is concluded that, consistent with their common evolutionary roots, the Drosophila larval and adult eyes use the same mechanisms for the regulation of opsin expression and photoreceptor cell fate specification. Strikingly, the structurally highly derived Bolwig organs retained a more ancestral state of opsin expression and regulation. Inconspicuous in size, the Drosophila larval eyes deliver useful lessons in the reconstruction of homology between neuronal cell types with gene expression data, and on the conservative nature of gene regulatory network evolution during the emergence of novel organs from ancestral templates.
Similar articles
-
Reconstructing the ancestral butterfly eye: focus on the opsins.J Exp Biol. 2008 Jun;211(Pt 11):1805-13. doi: 10.1242/jeb.013045. J Exp Biol. 2008. PMID: 18490396 Review.
-
Molecular evolution of the Drosophila retinome: exceptional gene gain in the higher Diptera.Mol Biol Evol. 2009 Jun;26(6):1273-87. doi: 10.1093/molbev/msp039. Epub 2009 Feb 27. Mol Biol Evol. 2009. PMID: 19252076
-
Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific.Nature. 1988 Jun 23;333(6175):779-82. doi: 10.1038/333779a0. Nature. 1988. PMID: 2968518
-
Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution.Dev Biol. 2006 Nov 15;299(2):310-29. doi: 10.1016/j.ydbio.2006.08.027. Epub 2006 Aug 16. Dev Biol. 2006. PMID: 16973149 Review.
-
Photoreceptor differentiation in Drosophila: from immature neurons to functional photoreceptors.Dev Dyn. 2005 Mar;232(3):585-92. doi: 10.1002/dvdy.20271. Dev Dyn. 2005. PMID: 15704118 Review.
Cited by
-
EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification.Front Cell Dev Biol. 2022 Aug 26;10:964746. doi: 10.3389/fcell.2022.964746. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36092740 Free PMC article.
-
Insect opsins and evo-devo: what have we learned in 25 years?Philos Trans R Soc Lond B Biol Sci. 2022 Oct 24;377(1862):20210288. doi: 10.1098/rstb.2021.0288. Epub 2022 Sep 5. Philos Trans R Soc Lond B Biol Sci. 2022. PMID: 36058243 Free PMC article. Review.
-
Homothorax controls a binary Rhodopsin switch in Drosophila ocelli.PLoS Genet. 2021 Jul 27;17(7):e1009460. doi: 10.1371/journal.pgen.1009460. eCollection 2021 Jul. PLoS Genet. 2021. PMID: 34314427 Free PMC article.
-
A combinatorial cis-regulatory logic restricts color-sensing Rhodopsins to specific photoreceptor subsets in Drosophila.PLoS Genet. 2021 Jun 23;17(6):e1009613. doi: 10.1371/journal.pgen.1009613. eCollection 2021 Jun. PLoS Genet. 2021. PMID: 34161320 Free PMC article.
-
Organization of the Drosophila larval visual circuit.Elife. 2017 Aug 8;6:e28387. doi: 10.7554/eLife.28387. Elife. 2017. PMID: 30726702 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
