Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences
- PMID: 18802440
- DOI: 10.1038/nprot.2008.98
Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences
Abstract
This protocol explains how to discover functional signals in genomic sequences by detecting over- or under-represented oligonucleotides (words) or spaced pairs thereof (dyads) with the Regulatory Sequence Analysis Tools (http://rsat.ulb.ac.be/rsat/). Two typical applications are presented: (i) predicting transcription factor-binding motifs in promoters of coregulated genes and (ii) discovering phylogenetic footprints in promoters of orthologous genes. The steps of this protocol include purging genomic sequences to discard redundant fragments, discovering over-represented patterns and assembling them to obtain degenerate motifs, scanning sequences and drawing feature maps. The main strength of the method is its statistical ground: the binomial significance provides an efficient control on the rate of false positives. In contrast with optimization-based pattern discovery algorithms, the method supports the detection of under- as well as over-represented motifs. Computation times vary from seconds (gene clusters) to minutes (whole genomes). The execution of the whole protocol should take approximately 1 h.
Similar articles
-
Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.Nat Protoc. 2008;3(10):1578-88. doi: 10.1038/nprot.2008.97. Nat Protoc. 2008. PMID: 18802439
-
Analyzing multiple data sets by interconnecting RSAT programs via SOAP Web services: an example with ChIP-chip data.Nat Protoc. 2008;3(10):1604-15. doi: 10.1038/nprot.2008.99. Nat Protoc. 2008. PMID: 18802441
-
Predicting transcription factor binding sites using local over-representation and comparative genomics.BMC Bioinformatics. 2006 Aug 31;7:396. doi: 10.1186/1471-2105-7-396. BMC Bioinformatics. 2006. PMID: 16945132 Free PMC article.
-
Discovering sequence motifs.Methods Mol Biol. 2008;452:231-51. doi: 10.1007/978-1-60327-159-2_12. Methods Mol Biol. 2008. PMID: 18566768 Review.
-
Computational approaches to finding and analyzing cis-regulatory elements.Methods Cell Biol. 2008;87:337-65. doi: 10.1016/S0091-679X(08)00218-5. Methods Cell Biol. 2008. PMID: 18485306 Review.
Cited by
-
Forkhead transcription factor FKH-8 cooperates with RFX in the direct regulation of sensory cilia in Caenorhabditis elegans.Elife. 2023 Jul 14;12:e89702. doi: 10.7554/eLife.89702. Elife. 2023. PMID: 37449480 Free PMC article.
-
Phage-borne factors and host LexA regulate the lytic switch in phage GIL01.J Bacteriol. 2011 Nov;193(21):6008-19. doi: 10.1128/JB.05618-11. Epub 2011 Sep 2. J Bacteriol. 2011. PMID: 21890699 Free PMC article.
-
Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs.Nat Protoc. 2011 Nov 3;6(12):1860-9. doi: 10.1038/nprot.2011.409. Nat Protoc. 2011. PMID: 22051799
-
The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family.Nat Commun. 2018 Oct 30;9(1):4526. doi: 10.1038/s41467-018-06977-6. Nat Commun. 2018. PMID: 30375394 Free PMC article.
-
RSAT 2018: regulatory sequence analysis tools 20th anniversary.Nucleic Acids Res. 2018 Jul 2;46(W1):W209-W214. doi: 10.1093/nar/gky317. Nucleic Acids Res. 2018. PMID: 29722874 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
