The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy

Am Nat. 1998 Jul;152(1):59-70. doi: 10.1086/286149.


In gynodioecious species, gender is generally determined by epistatic interactions between cytoplasmic and nuclear loci. However, theoretical studies suggest that, for a joint polymorphism at both cytoplasmic and nuclear loci to be maintained in a panmictic population, selection must act differently on the various genotypes that determine the same gender. Here we show that, in a metapopulation with local extinction and restricted gene flow, nucleocytoplasmic polymorphism can be maintained without these differences. We use deterministic simulations. We assume that gene flow occurred only at recolonization. Founder effects create genetic variance between populations in the metapopulation, and local population growth is faster when the local frequency of females is high. Group selection phenomena are involved in the maintenance of the joint polymorphism in the metapopulation. The frequency of females in the metapopulation at equilibrium is higher than in a panmictic population with the same genetic system. However, these conclusions hold only if nuclear alleles restoring male fertility are dominant.