Measuring personal exposure to airborne mutagens and nicotine in environmental tobacco smoke

Mutat Res. 1991 Sep;261(1):75-82. doi: 10.1016/0165-1218(91)90100-z.

Abstract

The exposure of individuals to environmental tobacco smoke (ETS) is of increasing public health concern because epidemiological studies have associated passive smoking with increased risk of a variety of adverse health effects among non-smokers including lung cancer. As a way to measure individual exposure to the mutagenic compounds in the complex mixture of ETS, we used a sensitive Salmonella/microsome micro pre-incubation (microsuspension) assay to detect mutagenicity of particulate matter collected on filters from low volume (1.7 1/min flow rate) personal sampling pumps. Airborne nicotine was collected concurrently as a marker for ETS exposure. In pilot-field studies, individual exposure to ETS was measured in two separate indoor environments in which smokers were present: a gambling casino and a bingo parlor. Total suspended particulate matter (TSP) was collected on filters worn near the breathing zone of non-smoking individuals. Sampling times ranged from 40 min to 6 h. All extracts of filters had detectable levels of mutagenic activity (TA98, +S9) resulting in airborne mutagenic activity concentrations of 500-5000 rev/m3. The mutagenic activity of the filters from the casino and bingo parlors was significantly correlated with total particulate matter per filters (n = 12; Rho = 0.85, p less than 0.01) and with airborne nicotine per filter (n = 12; Rho = 0.95, p less than 0.01). The microsuspension assay was sufficiently sensitive to detect the mutagens associated with extracts of particulate matter from low volume samples (0.2-0.6 m3) in these indoor environments over a relatively short sampling time, and could be useful in studies of personal exposure to the mutagens in environmental tobacco smoke. Further, airborne nicotine concentrations were highly correlated with airborne mutagenicity and the mutagenic activity associated with ETS could therefore be estimated by the concentrations of nicotine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollution*
  • Humans
  • Mutagenicity Tests
  • Mutagens*
  • Nicotiana
  • Nicotine / adverse effects*
  • Plants, Toxic
  • Salmonella / drug effects

Substances

  • Mutagens
  • Nicotine