Background: Signal regulate protein alpha (SIRPalpha) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2) integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.
Methodology/principal findings: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPalpha expression but an increase of beta(2) integrin cell surface expression and beta(2) integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha)-stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)-triggered cell surface expression of beta(2) integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2) integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2) integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression.
Conclusions/significance: SIRPalpha negatively regulates beta(2) integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.