Parasympathetic dysfunction is associated with insulin resistance in fructose-fed female rats

Braz J Med Biol Res. 2008 Sep;41(9):804-8. doi: 10.1590/s0100-879x2008005000030.


The objective of the present study was to identify metabolic, cardiovascular and autonomic changes induced by fructose overload administered in the drinking water of rats for 8 weeks. Female Wistar rats (200-220 g) were divided into 2 groups: control (N = 8) and fructose-fed rats (N = 5; 100 mg/L fructose in drinking water for 8 weeks). The autonomic control of heart rate was evaluated by pharmacological blockade using atropine (3 mg/kg) and propranolol (4 mg/kg). The animals were submitted to an intravenous insulin tolerance test (ITT) and to blood glucose measurement. The fructose overload induced a significant increase in body weight (approximately 10%) and in fasting glycemia (approximately 28%). The rate constant of glucose disappearance (KITT) during ITT was lower in fructose-fed rats (3.25 +/- 0.7%/min) compared with controls (4.95 +/- 0.3%/min, P < 0.05) indicating insulin resistance. The fructose-fed group presented increased arterial pressure compared to controls (122 +/- 3 vs 108 +/- 1 mmHg, P < 0.05) and a reduction in vagal tonus (31 +/- 9 vs 55 +/- 5 bpm in controls, P < 0.05). No changes in sympathetic tonus were observed. A positive correlation, tested by the Pearson correlation, was demonstrable between cardiac vagal tonus and KITT (r = 0.8, P = 0.02). These data provided new information regarding the role of parasympathetic dysfunction associated with insulin resistance in the development of early metabolic and cardiovascular alterations induced by a high fructose diet.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Fructose / administration & dosage*
  • Insulin Resistance / physiology*
  • Parasympathetic Nervous System / drug effects
  • Parasympathetic Nervous System / physiopathology*
  • Rats
  • Rats, Wistar


  • Fructose