Bayesian surprise attracts human attention
- PMID: 18834898
- PMCID: PMC2782645
- DOI: 10.1016/j.visres.2008.09.007
Bayesian surprise attracts human attention
Abstract
We propose a formal Bayesian definition of surprise to capture subjective aspects of sensory information. Surprise measures how data affects an observer, in terms of differences between posterior and prior beliefs about the world. Only data observations which substantially affect the observer's beliefs yield surprise, irrespectively of how rare or informative in Shannon's sense these observations are. We test the framework by quantifying the extent to which humans may orient attention and gaze towards surprising events or items while watching television. To this end, we implement a simple computational model where a low-level, sensory form of surprise is computed by simple simulated early visual neurons. Bayesian surprise is a strong attractor of human attention, with 72% of all gaze shifts directed towards locations more surprising than the average, a figure rising to 84% when focusing the analysis onto regions simultaneously selected by all observers. The proposed theory of surprise is applicable across different spatio-temporal scales, modalities, and levels of abstraction.
Figures
Comment in
-
Visual attention: Neurophysiology, psychophysics and cognitive neuroscience.Vision Res. 2009 Jun;49(10):1033-6. doi: 10.1016/j.visres.2009.04.022. Vision Res. 2009. PMID: 19524101 No abstract available.
Similar articles
-
Of bits and wows: A Bayesian theory of surprise with applications to attention.Neural Netw. 2010 Jun;23(5):649-66. doi: 10.1016/j.neunet.2009.12.007. Epub 2009 Dec 28. Neural Netw. 2010. PMID: 20080025 Free PMC article.
-
The surprise-attention link: a review.Ann N Y Acad Sci. 2015 Mar;1339:106-15. doi: 10.1111/nyas.12679. Epub 2015 Feb 13. Ann N Y Acad Sci. 2015. PMID: 25682693 Review.
-
Automatic computation of an image's statistical surprise predicts performance of human observers on a natural image detection task.Vision Res. 2009 Jun;49(13):1620-37. doi: 10.1016/j.visres.2009.03.025. Epub 2009 Apr 5. Vision Res. 2009. PMID: 19351543
-
Electroencephalographic correlates of temporal Bayesian belief updating and surprise.Neuroimage. 2021 May 1;231:117867. doi: 10.1016/j.neuroimage.2021.117867. Epub 2021 Feb 13. Neuroimage. 2021. PMID: 33592246
-
Statistical decision theory to relate neurons to behavior in the study of covert visual attention.Vision Res. 2009 Jun;49(10):1097-128. doi: 10.1016/j.visres.2008.12.008. Epub 2009 Jan 10. Vision Res. 2009. PMID: 19138699 Review.
Cited by
-
Belief-consistent information is most shared despite being the least surprising.Sci Rep. 2024 Mar 13;14(1):6109. doi: 10.1038/s41598-024-56086-2. Sci Rep. 2024. PMID: 38480773 Free PMC article.
-
Identifying content-invariant neural signatures of perceptual vividness.PNAS Nexus. 2024 Feb 14;3(2):pgae061. doi: 10.1093/pnasnexus/pgae061. eCollection 2024 Feb. PNAS Nexus. 2024. PMID: 38415219 Free PMC article.
-
Shared attention in virtual immersive reality enhances electrophysiological correlates of implicit sensory learning.Sci Rep. 2024 Feb 14;14(1):3767. doi: 10.1038/s41598-024-53937-w. Sci Rep. 2024. PMID: 38355691 Free PMC article.
-
The representation of priors and decisions in the human parietal cortex.PLoS Biol. 2024 Jan 29;22(1):e3002383. doi: 10.1371/journal.pbio.3002383. eCollection 2024 Jan. PLoS Biol. 2024. PMID: 38285671 Free PMC article.
-
A neural mechanism for conserved value computations integrating information and rewards.Nat Neurosci. 2024 Jan;27(1):159-175. doi: 10.1038/s41593-023-01511-4. Epub 2024 Jan 4. Nat Neurosci. 2024. PMID: 38177339 Free PMC article.
References
-
- Abrams RA, Christ SE. Motion onset captures attention. Psychological Science. 2003;14(5):427–432. - PubMed
-
- Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for Boltzmann machines. Cognitive Science. 1985;9:147–169.
-
- Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH. Population and familial association between the D4 dopamine receptor gene and measures of Novelty seeking. Nature Genetics. 1996;12(1):81–84. - PubMed
-
- Brown LD. Fundamentals of statistical exponential families. Institute of Mathematical Statistics; Hayward, CA: 1986.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
