The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy

ALTEX. 2008;25(3):163-90.

Abstract

Human embryonic stem cells (hESC) are now routinely cultured in many laboratories, and differentiation protocols are available to generate a large variety of cell types. In an ongoing ethical debate opinions of different groups are based on varying sets of religious, historical, cultural and scientific arguments as well as on widely differing levels of general information. We here give an overview of the biological background for non-specialists, and address all is- sues of the current stem cell debate that are of concern in different cultures and states. Thirty-five chapters address embryo definition, potential killing and the beginning of human life, in addition to matters of human dignity, patenting, commercialisation, and potential alternatives for the future, such as induced pluripotent (reprogrammed) stem cells. All arguments are compiled in a synopsis, and compromise solutions, e.g. for the definition of the beginning of personhood and for assigning dignity to embryos, are suggested. Until recently, the major application of hESC was thought to be transplantation of cells derived from hESC for therapeutic use. We discuss here that the most likely immediate uses will rather be in vitro test systems and disease models. Major and minor pharmaceutical companies have entered this field, and the European Union is sponsoring academic research into hESC-based innovative test systems. This development is supported by new testing strategies in Europe and the USA focussing on human cell-based in vitro systems for safety evaluations, and shifting the focus of toxicology away from classical animal experiments towards a more mechanistic understanding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Testing Alternatives / ethics
  • Animal Testing Alternatives / methods
  • Animal Welfare
  • Animals
  • Cell Line
  • Embryo Research / ethics*
  • Embryonic Stem Cells / drug effects*
  • Humans
  • Stem Cell Transplantation / methods*