Lineage specific recombination rates and microevolution in Listeria monocytogenes
- PMID: 18842152
- PMCID: PMC2576243
- DOI: 10.1186/1471-2148-8-277
Lineage specific recombination rates and microevolution in Listeria monocytogenes
Abstract
Background: The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates.
Results: Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck.
Conclusion: Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease.
Figures
Similar articles
-
Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods.J Bacteriol. 2005 Aug;187(16):5537-51. doi: 10.1128/JB.187.16.5537-5551.2005. J Bacteriol. 2005. PMID: 16077098 Free PMC article.
-
Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages.Infect Genet Evol. 2011 Dec;11(8):1881-90. doi: 10.1016/j.meegid.2011.08.001. Epub 2011 Aug 11. Infect Genet Evol. 2011. PMID: 21854875 Free PMC article.
-
Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages.Appl Environ Microbiol. 2004 Apr;70(4):2193-203. doi: 10.1128/AEM.70.4.2193-2203.2004. Appl Environ Microbiol. 2004. PMID: 15066813 Free PMC article.
-
Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics.Int J Med Microbiol. 2011 Feb;301(2):79-96. doi: 10.1016/j.ijmm.2010.05.002. Epub 2010 Aug 13. Int J Med Microbiol. 2011. PMID: 20708964 Review.
-
The evolution and epidemiology of Listeria monocytogenes in Europe and the United States.Infect Genet Evol. 2015 Oct;35:172-83. doi: 10.1016/j.meegid.2015.08.008. Epub 2015 Aug 5. Infect Genet Evol. 2015. PMID: 26254574 Review.
Cited by
-
Comparative Analysis of Growth, Survival, and Virulence Characteristics of Listeria monocytogenes Isolated from Imported Meat.Microorganisms. 2024 Feb 7;12(2):345. doi: 10.3390/microorganisms12020345. Microorganisms. 2024. PMID: 38399749 Free PMC article.
-
Persistence of microbiological hazards in food and feed production and processing environments.EFSA J. 2024 Jan 19;22(1):e8521. doi: 10.2903/j.efsa.2024.8521. eCollection 2024 Jan. EFSA J. 2024. PMID: 38250499 Free PMC article.
-
Why does Listeria monocytogenes survive in food and food-production environments?J Vet Res. 2023 Dec 19;67(4):537-544. doi: 10.2478/jvetres-2023-0068. eCollection 2023 Dec. J Vet Res. 2023. PMID: 38130454 Free PMC article.
-
Contrasting genes conferring short- and long-term biofilm adaptation in Listeria.Microb Genom. 2023 Oct;9(10):001114. doi: 10.1099/mgen.0.001114. Microb Genom. 2023. PMID: 37850975 Free PMC article.
-
Human Listeriosis.Clin Microbiol Rev. 2023 Mar 23;36(1):e0006019. doi: 10.1128/cmr.00060-19. Epub 2022 Dec 8. Clin Microbiol Rev. 2023. PMID: 36475874 Free PMC article. Review.
References
-
- Sauders B, Durak M, Fortes E, Windham K, Schukken Y, Lembo A, Akey B, Nightingale K, Wiedmann M. Molecular characterization of Listeria monocytogenes from natural and urban environments. J Food Prot. 2006;69(1):93–105. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Miscellaneous
