Simple and complex spike firing patterns in Purkinje cells during classical conditioning

Cerebellum. 2008;7(4):563-6. doi: 10.1007/s12311-008-0068-2.


Classical blink conditioning is known to depend critically on the cerebellum and the relevant circuitry is gradually being unravelled. Several lines of evidence support the theory that the conditioned stimulus is transmitted by mossy fibers to the cerebellar cortex whereas the unconditioned stimulus is transmitted by climbing fibers. This view has been dramatically confirmed by recent Purkinje cell recordings during training with a classical conditioning paradigm. We have tracked the activity of single Purkinje cells with microelectrodes for several hours in decerebrate ferrets during learning, extinction, and relearning. Paired peripheral forelimb and periocular stimulation, as well as paired direct stimulation of cerebellar afferent pathways (mossy and climbing fibers) causes acquisition of a pause response in Purkinje cell simple spike firing. This conditioned Purkinje cell response has temporal properties that match those of the behavioral response. Its latency varies with the interstimulus interval and it responds to manipulations of the conditioned stimulus in the same way that the blink does. Complex spike firing largely mirrors the simple spike behavior. We have previously suggested that cerebellar learning is subject to a negative feedback control via the inhibitory nucleo-olivary pathway. As the Purkinje cell learns to respond to the conditioned stimulus with a suppression of simple spikes, disinhibition of anterior interpositus neurons would be expected to cause inhibition of the inferior olive. Observations of complex spike firing in the Purkinje cells during conditioning and extinction confirm this prediction. Before training, complex spikes are unaffected or facilitated by the conditioned stimulus, but as the simple spike pause response develops, spontaneous and stimulus-evoked complex spikes are also strongly suppressed by the conditioned stimulus. After extinction of the simple spike pause response, the complex spikes reappear.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Afferent Pathways / physiology
  • Animals
  • Cerebellar Nuclei / physiology
  • Cerebellum / physiology*
  • Conditioning, Classical / physiology*
  • Decerebrate State
  • Electric Stimulation
  • Extinction, Psychological / physiology
  • Ferrets
  • Forelimb / innervation
  • Learning
  • Nerve Fibers / physiology*
  • Neurons / physiology
  • Olivary Nucleus / physiology
  • Photic Stimulation
  • Purkinje Cells / physiology*
  • Reaction Time