Measuring temporal variability in pore-fluid chemistry to assess gas hydrate stability: development of a continuous pore-fluid array

Environ Sci Technol. 2008 Oct 1;42(19):7368-73. doi: 10.1021/es801195m.

Abstract

A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site. A 170 day record was acquired from the overlying water and 1.3 m below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and methane concentrations and dissolved inorganic carbon and methane stable carbon and deuterium isotope ratios. Chloride and sulfate did not change significantly over time, suggesting the absence of gas hydrate formation or decomposition events. Over the temporal record, methane concentrations averaged 4 mM at 1.3 mbsf, and methane was thermogenic in origin (delta13C-CH4 = -32.4 +/- 3.4 per thousand). The timing of an anomalous 14 mM methane spike coincided with a nearby earthquake (Mw = 5.8), consistent with the hypothesis that pore-fluid chemistry reflects seismic events.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gases / chemistry*
  • Geography
  • Ions
  • Methane / chemistry
  • Porosity
  • Rheology / methods*
  • Solubility
  • Time Factors
  • Water / chemistry*

Substances

  • Gases
  • Ions
  • Water
  • Methane