Genetic and Phenotypic Analysis of Soybean mosaic virus Resistance in PI 88788 Soybean

Phytopathology. 2004 Jul;94(7):687-92. doi: 10.1094/PHYTO.2004.94.7.687.

Abstract

ABSTRACT Resistance to Soybean mosaic virus (SMV) was identified in PI 88788 soybean, a germ plasm accession from China that is used widely as a source of resistance to soybean cyst nematode. Strains SMV-G1 through -G7 infected the inoculated leaves of PI 88788 but were not detected in upper, noninoculated trifoliolate leaves. Inheritance of resistance was determined by inoculating progenies of crosses of PI 88788 with susceptible cvs. Essex and Lee 68 with SMV strains G1 and G7. Allelomorphic relationships with known genes for resistance to SMV were tested in crosses with the resistant genotypes PI 96983, L29, and V94-5152, possessing Rsv1, Rsv3, and Rsv4 genes, respectively. Data analyses showed that resistance in PI 88788 to SMV-G1 is controlled by a single, partially dominant gene; however, to SMV-G7, the same gene was completely dominant. The PI 88788 gene was independent of the Rsv1 and Rsv3 loci, but allelic to Rsv4 in V94-5152. Expression of the Rsv4 gene in PI 88788 resulted in a reduced number of infection sites and restricted short- and long-distance movement of virus, rather than hypersensitivity. A unique late susceptible phenotype was strongly associated with heterozygosity. This gene has potential value for use in gene pyramiding to achieve resistance to several SMV strains, as well as for rate-reducing resistance.