Electrochemical Properties of Carbon Nanoparticles Entrapped in Silica Matrix

J Electrochem Soc. 2008;155(5):K91-K95. doi: 10.1149/1.2868772.


Carbon-based electrode materials have been widely used for many years for electrochemical charge storage, energy generation, and catalysis. We have developed an electrode material with high specific capacitance by entrapping graphite nanoparticles into a sol-gel network. Films from the resulting colloidal suspensions were highly porous due to the removal of the entrapped organic solvents from sol-gel matrix giving rise to high Brunauer-Emmett-Teller (BET) specific surface areas (654 m(2)/g) and a high capacitance density ( approximately 37 F/g). An exponential increase of capacitance was observed with decreasing scan rates in cyclic voltammetry studies on these films suggesting the presence of pores ranging from micro (< 2 nm) to mesopores. BET surface analysis and scanning electron microscope images of these films also confirmed the presence of the micropores as well as mesopores. A steep drop in the double layer capacitance with polar electrolytes was observed when the films were rendered hydrophilic upon exposure to a mild oxygen plasma. We propose a model whereby the microporous hydrophobic sol-gel matrix perturbs the hydration of ions which moves ions closer to the graphite nanoparticles and consequently increase the capacitance of the film.