["Blocking" by polyethyleneglycol of single lipid pores arising in unmodified bilayer lipid membranes during phase transitions]

Biofizika. 2008 Sep-Oct;53(5):802-9.
[Article in Russian]

Abstract

Changes in the ionic permeability of bilayer lipid membranes from dipalmitoyl phosphatidylcholine at temperatures of phase transition in LiCl (1 M) solution after the addition of polyethyleneglycols of different molecular masses have been studied. The transition of ionic membrane channels from the conducting state to a blocking nonconducting state using polymers makes it possible to calibrate lipid pores. It was shown that low-molecular-weight glycerol, polyethyleneglycols with molecular masses of 300 and 600 decrease the amplitude of fluctuations of the current through the membrane, the decrease being proportional to the size of the polymer molecule being incorporated. The addition of polyethyleneglycols with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. This result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as polyethyleneglycols with molecular masses of 6000 and 20000, which are practically not incorporated into the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of polyethyleneglycol. It is assumed that the complete blockade of the conductivity of lipid ionic channels by polyethyleneglycols with molecular masses of 1450, 2000, and 3350 is due to the dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic pore.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Conductivity
  • Lipid Bilayers / chemistry*
  • Phase Transition*
  • Polyethylene Glycols / chemistry*

Substances

  • Lipid Bilayers
  • Polyethylene Glycols