Heme oxygenase has been linked to the oxygen-sensing function of the carotid body, pulmonary vasculature, cerebral vasculature, and airway smooth muscle. We have shown previously that the cardiorespiratory regions of the rostral ventrolateral medulla are excited by local hypoxia and that heme oxygenase-2 (HO-2) is expressed in the hypoxia-chemosensitive regions of the rostral ventrolateral medulla (RVLM), the respiratory pre-Bötzinger complex, and C1 sympathoexcitatory region. To determine whether heme oxygenase is necessary for the hypoxic-excitation of dissociated RVLM neurons (P1) cultured on confluent medullary astrocytes (P5), we examined their electrophysiological responses to hypoxia (NaCN and low Po(2)) using the whole-cell perforated patch clamp technique before and after blocking heme oxygenase with tin protoporphyrin-IX (SnPP-IX). Following the electrophysiological recording, immunocytochemistry was performed on the recorded neuron to correlate the electrophysiological response to hypoxia with the expression of HO-2. We found that the responses to NaCN and hypoxia were similar. RVLM neurons responded to NaCN and low Po(2) with either depolarization or hyperpolarization and SnPP-IX blocked the depolarization response of hypoxia-excited neurons to both NaCN and low Po(2) but had no effect on the hyperpolarization response of hypoxia-depressed neurons. Consistent with this observation, HO-2 expression was present only in the hypoxia-excited neurons. We conclude that RVLM neurons are excited by hypoxia via a heme oxygenase-dependent mechanism.